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A Uniform Distribution Question Related 
to Numerical Analysis 

By Harald Niederreiter* and Charles F. Osgood 

Abstract. Using the theory of uniform distribution modulo one, it is shown that 

under certain conditions on the real-valued functions ca(x) and g(x) on [0, 1 ], 

-1 h fh% {hl(yh)}lmg(,yh) =(m + 1) f1f g(x) dx +o(h1Ilog ) as h -0+, 

where m > 0 and {x} denotes the fractional part of x. The conditions are as fol- 

lows: oz'(x) exists for all but finitely many points in [0, 1], changes sign at most 

finitely often, and is bounded away in absolute value from both 0 and -, whereas 

g(x) is of bounded variation on [0, 1]. Also, under these conditioris on oz(x), 

[h 1 - 

h {h-lo,(yh)}m = (m + 1)- + 0(h1 3) as h - 0+. 

These results, which are, in fact, deduced from somewhat more general proposi- 

tions, answer questions of Feldstein connected with discretization methods for 

differential equations. 

In connection with algorithms for solving retarded ordinary differential equations 
by discretization methods, Feldstein [1] was led to search for conditions on the real- 
valued functions oa(x) and g(x) defined on [0, 1] which guarantee that 

11 1 rl 

limX {h- (x)}mg(x)dx = m + Ig(x)dx 

for m > 0, where {x} = x - [xl is the fractional part function. Sufficient conditions 
of a quite general nature were given in [1]. The question was raised as to what hap- 
pens when the integral on the left-hand side is replaced by a Riemann sum of mesh 
size h. We address ourselves to this problem. Thus, we inquire about conditions on 
a(x) and g(x) in order for 

l-1 [ h 
(1 ) lim h E {h-l t(7h)}mg(7h) 

h-O+ 'y= l 

to exist and equal (m + I)-'f g(x)dx, and furthermore, what could be said about 
the rate of convergence. 

Since it is straightforward to check that for m > 0, g(x) 1, and ce(x) = x + a 
with a constant a $ 0, the limit in (1) fails to exist, it is clear that some restrictions 
on the derivatives of ae(x) are to be expected. Actually, the simple condition on the 
second derivative of ae(x) enunciated in Theorem 1 below will suffice (compare with 
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Corollary 2). The regularity conditions on g(x) are rather mild, since g(x) need only 
be of bounded variation on [0, 1] . If these requirements are met, an estimate for the 
remainder term can also be established. The condition on d"(x) can even be relaxed 
somewhat (see the remark following Corollary 3). 

The reader may check that, using the proofs presented below, the implied con- 
stant in the error estimate in Corollary 2 may be effectively computed in terms of the 
upper and lower bounds on ld"(x)I, the total variation of g(x) on [0, 1], and 

supo0 -x1 Ig(x)I, and in Corollary 3 in terms of the upper and lower bounds on 

l"d(x)I alone. It is interesting to note that the constants turn out to be independent 
of m. This is due to the fact that the function xm has total variation 1 on [0, 1], no 
matter which m > 0 we consider. 

The results concerning (1) are deduced from somewhat more general statements 
contained in Theorem 1 and, for g(x) -1, in Theorem 2. In the proofs of these the- 
orems, we need the notions of discrepancy of a finite sequence of points in [0, 1] 2 

and in [0, 1], respectively, for which we refer to [3, Chapter 2, Section 1]. We re- 
call also that a function F(x, y) on [0, 1] 2 is said to be of bounded variation in the 
sense of Hardy and Krause if it is of bounded variation on [0, 1] 2 in the sense of 
Vitali (see [2] and [3, Definition 5.1, p. 147]), and if the four functions F(x, 0), 
F(x, 1), F(0, y), and F(1, y) are of bounded variation on [0, 1]. We shall use 
Vinogradov's notation << and Landau symbols interchangeably. 

THEOREM 1. Let F(x, y) be of bounded variation on [0, 1] 2 in the sense of 
Hardy and Krause, and let a(x) be twice differentiable on [0, 1] with A < d'(x) < B 
for 0 < X < 1 or - B < ?"(x) < - A for O < x < l and positive constants A and B. 
Then, 

h h 
- 

F({h 1 ca(yh)} ryh) =f1f1F(x, 
y) dx dy + O (h 1 /3log h) as h 0?. 

PROOF. Let h be sufficiently small, say 0 < h < 1/8, and let M - [h- 13]. 

For integers j and k we set 

(2) Sj,k = h-1] L exp [27ri(jh l (Th) + k7h)] 

If 1 S lil < M, we write 

h-1 

(3) S. k 
I Z exp[2riq(y)] , 

where the function q is defined by q(t) = jh - 1 a(ht) + kht for 1 < t < [h-]. Of 
course, q depends also on h, j, and k, but we suppress this dependence in the notation. 
We observe that q"(t) = jhd"(ht), so that q"(t) does not change sign and Iq"(t)I > 

lilhA > 0. Therefore, by (3) and an inequality of van der Corput (see [3, Chapter 1, 
Theorem 2.7] and [5]) we have 

S. < [h] - (Iq'([h1-)l - q'(1)I + 2)(4(ViIhA)- l/2 + 3) 

= [h-] - 1 (li'(h [h -]-i'(h)I + 2)(4(IjIhA)- 1/2 + 3). 
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From l'"(x)l < B and the mean-value theorem we infer 

lid'(h[h-']) -jcx'(h)I < I/lB. 

Since ljlh S Mh S h213 < 1/4, we have 

4(lilhA)- 112 + 3 < (4A-112 + 3!2)(ljlh)- 112; 

and so, 

(4) S k << (1lh)l /2 for 1 < lil S M and all k, 

where the implied constant is independent of h, j, and k. For j 0 O and 1 S Ikl < M, 
we have 

[h11 2i ih 
S = | 1 E e 2-ikyh - Ie2likh[h l e 

O,k | [h-11 yi [h-1] le27rikh - Ii 

Now Iklh < Mh < h213 < 1/4 and IkI - Iklh < Iklh[h-1 < Ik l, so that for certain a 
and 0 with 0 ?6 <0 ? 1/4 we have 

Sok = le2 - 1I/[h ] le - 1i1; 

and hence, 

(5) SO k < [h << h for I < Ikl I M. 

Let r(a)= max(1, lat) for a C Z. By a result on quantitative Fourier inversion (see [4]), 
the discrepancy D [ h - of the points ({/- h aQ(h)}, yh), 1, 2, .. ., [h1 ],in 

[O, 1]2 satisfies 

D ?-? 
I 1 

(h 1 M ljl?M;IkI?M r(i)r(k) j,k' 

where the asterisk indicates that 0, k) = (0, 0) is deleted from the range of summation 

and where the implied constant is absolute. It follows now from (4) and (5) that 

[h 1 M 1 6 1j I < M; lk KM ij I r(k) j, k 1 l I M Ik l O,k 

???hl1/2 S liF 1/2 1: 1 ?hI 
M + 1 

jiliM Ikk?M r(k) 1 ik KM Ikl 

<< ? -+ h12M1I2log M + h log M << h1I3 + h1/3 log h << h1I3 log j-, 

by the definition of M. According to [3, Chapter 2, Theorem 5.5], we get 

1 , F({h-'a(yh)}, yh) F(x, y) dx dy ? O(h3log 1/h). 
[h-1] F=lh ) 

Since F is bounded, we have 

[ h 1 [ h 
h 5 F({h'a(-yh)}, yh) F({hV'a(-yh)}, yh) ? 0(h), 

'Y= 1 [h-1] y=1 
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and the desired result follows. 
COROLLARY 1. Let f(x) and g(x) be of bounded variation on [0, 11, and let 

a(x) satisfy the conditions of Theorem 1. Then, 

[h -1 

h , f({h 1-a(7h)})g(,yh) 
-y=1 

= (f1f(x)dx) (x) + O(h 31g 1/h) as h - 0+. 

PROOF. It suffices to note that F(x, y) = f(x)g(y) is of bounded variation on 

[0, 11 2 in the sense of Hardy and Krause. The rest follows from Theorem 1. 
COROLLARY 2. Let m > 0 be real, and let g(x) and ax(x) be as in Corollarv 1. 

Then, 

-1 ~ ~ ~ ~~~~~~~~~~3o 
h E h-l a(yh)}mg(yh) i g(x) dx + O(h"lo1g 1/h) as h 0+. 

'Y= 1 ~~~m ? I0 

PROOF. Take f(x) = xm in Corollary 1. 
In the special case where g(x) is constant, say g(x) 1, slight improvements on 

the above results can be obtained. 
THEOREM 2. Let f(x) be of bounded variation on [0, 1], and let a(x) be as in 

Theorem 1. Then, 

[h-11 
h , f({h1&aQ(yh)}) 

- f(x)dx + 0(h3) as h 0+? 
Y=1 

PROOF. Let h with 0 < h < 1/8 be given. With Si k defined by (2) and M = 

[h"-1/3], the discrepancy Dh-1 of the points {h 1a(yh)}, y 1,2, . . , [h-I, 

in [0, l] satisfies 

D <l1 <2; : -ZSy, 0 l h m i=j I j 

according to an inequality in [41, where the implied constant is absolute. It follows 

from (4) that 

D << + h112 1/2 << - + h << h 
[h I1 Mj= 

The proof is now completed as in Theorem 1, by using [3, Chapter 2, Theorem 5.11. 
COROLLARY 3. Let m > 0 be real, and let a(x) be as in Theorem 1. Then, 

[h 1 1 
fh, {h-a(7yh)} m ?1? + O(hI/3) as h 0+. 

In all of the above results, the conditions on o(x) may be relaxed somewhat by 
assuming only that a"(x) exists for all but finitely many points in [0, 1], that 0 < A < 

ld"(x)I < B whenever oa"(x) exists, and that oi'(x) changes sign at most finitely often in 
[0, 1]. This will only affect the estimation of (3), where one now splits up the sum 
into a fixed number of subsums in such a way that van der Corput's inequality can be. 
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applied to each subsum containing more than one term. 
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